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Abstract
DyIn3 orders at TN = 20 K and undergoes a second spontaneous magnetic
transition at 16.5 K. From bulk magnetization measurements, performed on
a single crystal along the three main axes of the cubic AuCu3-type structure,
the magnetic phase diagrams have been established. The crystalline electric
field (CEF) scheme, in the paramagnetic phase, and the magnetic structures
of the spontaneous and low field-induced phases have been probed by neutron
techniques. All the magnetic phases studied are found to be multiple q with q
belonging to the 〈1/2, 1/2, 0〉 star. In the low temperature phase (T < 16.5 K)

the structure is double q with moments along twofold axes, whereas above
16.5 K it becomes triple q with moments along threefold axes. The analysis
of the experimental results within the periodic molecular field model leads
to a coherent interpretation of the spontaneous magnetic transitions, mainly
driven by bilinear exchange and CEF interactions. Though the existence of
quadrupolar interactions is definitively proved by the stabilization of multiple
q magnetic structures, quadrupolar coefficients are found to be one order of
magnitude smaller than those previously reported for NdIn3 and TbIn3.

1. Introduction

Rare earth-based intermetallics are known for their surprisingly wide variety of magnetic
properties. In systems where only the 4f ions are magnetic, the interplay between the
crystalline electric field (CEF) and just bilinear exchange interactions may result in very
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complex behaviours. Complex multiple step or spin-flip metamagnetism is observed in many
antiferromagnetic compounds of low symmetry such as tetragonal or hexagonal systems [1].
However in systems where multiaxial magnetic structures stabilize, particularly in cubic ones,
it is now well established that couplings involving the 4f charge distribution come into play
for a complete understanding of magnetic properties [2]. Within a crystal, as a consequence of
the CEF interactions, the 4f shell loses its sphericity. In high symmetry systems however, the
degeneracy is not totally removed and electric multipoles (at first order the quadrupoles) are
not totally ordered by the CEF. These orbital degrees of freedom are collectively active in the
minimization of the total free energy of the system and influence the magnetic properties in both
the ordered and paramagnetic phases. Quadrupolar interactions are for instance responsible
for the stabilization of the multiple q magnetic structures in cubic antiferromagnets [2, 3].
They lead to complex (H, T ) magnetic phase diagrams in many compounds of the CsCl
type [4–9], where they are well balanced with the bilinear exchange interactions. Excepting
TmGa3 [10], little work has been done on systems with AuCu3-type structure, though several
compounds of the RIn3 series presented complex magnetic behaviours reminiscent of the
CsCl-type compounds [11–15]. This motivated the study of the RIn3 series [16–21].

From previous studies it was known that DyIn3 orders at TN = 19.3 K and undergoes, like
TbIn3 [14–21], a second spontaneous transition at T∗ = 17 K [15]. Moreover magnetization
measurements at 4.2 K under high magnetic field (up to 20 T) reveal multiple step processes
along the three principal crystallographic axes [11]. To get a more complete insight into the
ordered magnetic range properties of DyIn3, we have performed further studies, presented in
the present paper. The first section is devoted to the bulk magnetic measurements,performed on
a single crystal, and to the determination of the magnetic phase diagrams along the three main
axes of the cube. The investigation of the magnetic structures, using neutron diffraction under
a magnetic field, is presented in section 2. The knowledge of the CEF scheme is necessary
to a quantitative analysis. It was probed by neutron spectroscopy and results are reported in
section 3. In the last section we perform an analysis of the different experimental results using
the periodic molecular field model in order to achieve a quantitative description of the magnetic
properties of DyIn3.

2. Magnetization measurements

The magnetization measurements were performed at the Laboratoire Louis-Néel using
an extraction method. Two cryomagnets, which supply magnetic fields up to 11 and
16 T respectively, were used in the temperature range 1.5–300 K. The sensitivity of the
measurements reaches 10−7 A m2. The sample is a single crystal of cylindrical shape: 6 mm
diameter and 3 mm height. The cylinder axis is parallel to a twofold axis. Isofield and
isothermal magnetization curves were measured with the magnetic field applied along the
three main axes of the cubic structure.

In the antiferromagnetic phase magnetization measurements confirm the multiple step
character of the magnetization processes [11]. Figure 1 shows the magnetization processes
measured along the three main axes of the cube at 2 K. When the field is applied along the
fourfold and threefold axes, a jump in the magnetization of about 1 µB is observed around 4.7 T.
No other anomaly is observed up to 9 T and at this field the magnetization reaches only 3.7 µB

(figure 1). These results are in agreement with those reported in [11]. Along the fourfold axis
a small change in the curve slope is evidenced around 1.5 T in the derivative (figure 2). This
anomaly, that subsists above T∗, is observed along the fourfold axis only and can be ascribed
to domain motions. Along the twofold axis, measurements were performed up to 14.5 T. At
2 K along this axis, the magnetization shows four steps at µ0 Hc = 4.3, 6.4, 9 and 13.8 T.
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Figure 1. Magnetization curves measured at 2 K for fields applied along the three main symmetry
axes of the cubic AuCu3-type structure. For clarity the curves have been offset by 2 µB.
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Figure 2. Magnetization curves and derivatives at 2 and 17 K for a magnetic field applied along a
fourfold axis.

Under a field of 14.5 T (the limit of the available fields) the magnetization reaches only 6.4 µB

at 2 K. The value of the fourth critical field, 13.8 T, is smaller than the one reported in [11]
(µ0 Hc = 15.5 T). From the same reference the saturation of the magnetization is reached after
this fourth step with a value of 8.67 µB. The discrepancy may be explained by the existence
of a fifth transition above 14.5 T, which was not resolved in the former measurements. It is
worth noting that the present measurements have a better resolution. Along this twofold axis
the thermal variations of the magnetization measured under different fields reveal the existence
of new transitions, as observed in figure 3 for the curves under 10 or 14.5 T.

From magnetization processes and thermal variations of the magnetization under different
fields, the H –T phase diagrams were partly (field limitation) built for the three symmetry axes
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Figure 3. Thermal variation of the magnetization for different values of the field applied along a
twofold axis.

Figure 4. Magnetic phase diagrams of DyIn3 for fields applied along a twofold axis (a), threefold
axis (b) and fourfold axis (c). Diamonds represent the features observed on magnetization curves:
open diamonds indicate domain effects and full ones critical fields. Open stars represent the values
of the critical fields given in [11]. The circles represent the critical temperatures determined from
thermal variations.

of the cube (figure 4). Along the twofold axis (figure 4(a)), in addition to the two spontaneous
phases, three field-induced magnetic phases are observed. As discussed above and according
to [11], a fourth field-induced phase is expected at low temperatures in high fields before
reaching the paramagnetic saturated phase. Along the threefold (figure 4(b)) and fourfold axes
(figure 4(c)), the measurements were performed only up to 9 T; therefore the evolution of the
high field-induced phases could not be followed. The curve represented by open diamonds
in figure 4(c) accounts for domain effects as mentioned above. The temperatures of the
spontaneous transitions deduced from these diagrams are respectively TN = 20.3 ± 0.3 K and
T∗ = 16.5 ± 0.3 K.
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Figure 5. Arrott plots (M2 = f (H/M)) obtained for magnetization curves in fields along a
twofold axis.
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Figure 6. The thermal variation of the inverse of the first order magnetic susceptibility. The
dots represent the experimental points determined from the magnetization measurements along the
fourfold axis. The lines represent the thermal variation calculated with the set of CEF parameters:
W = 0.142 K and x = −0.145 for θp = 0 K (dashed line) and θp = −32 K (full line).

In the paramagnetic phase the first and third order magnetic susceptibilities, χ(1) and χ(3)

respectively, were deduced from Arrott plots, M2 = f (H/M), that show a linear behaviour in
the temperature range 21–300 K (figure 5). In figure 5 are also shown the Arrott plots at 20 and
19 K; they present a change of sign of the initial slope characteristic of the magnetically ordered
phase. In the present work, only the plots above 21 K have been used for the determination
of the magnetic susceptibilities. At each temperature the intercept of M2 = f (H/M) with
the H/M axis gives the inverse of χ(1). χ(3) is deduced from the slope of the Arrott plots
using the expression χ(3) = −[χ(1)]4[�(µ0 H/M)/�M2]. In figure 6 we present the thermal
variation of 1/χ(1). It follows a Curie–Weiss law that intercepts the temperature axis at
θp = −32.6 ± 1 K. The effective magnetic moment obtained from the slope of the Curie–
Weiss line: 10.59 ± 0.1 µB, is in good agreement with the theoretical value for the Dy3+ ion,
µeff = 10.646 µB. Figure 7 shows the thermal variation up to 100 K of χ(3), determined
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Figure 7. The thermal variation of the third order magnetic susceptibility for fields applied along
the three main symmetry axes of the cube. The curves represent the calculations with the set of
CEF parameters, W = 0.142 K and x = −0.145, and the values of the θp and G1 parameters given
in the figures.

for fields applied along the [110], [001] and [111] axes. It remains negative over the whole
temperature range studied and decreases with the temperature down to 26 K. The upward slope
observed below this temperature is probably due to magnetic correlations when getting closer
to the ordering temperature. The third order susceptibility presents a slight anisotropy between
the threefold and fourfold high symmetry axes. The easy axis appears to be the threefold one.

3. Neutron diffraction

Neutron diffraction experiments were carried out at the CEN-Grenoble reactor SILOE, on the
DN3 spectrometer. In order to reduce the absorption, the DyIn3 sample used in this experiment
was a long single crystalline needle of 10 mm height and 1 mm diameter, with the twofold
axis along the cylinder axis. It was mounted with this axis [11̄0] vertical and parallel to the
magnetic field supplied by a cryomagnet. With this set-up experiments could be performed in
the temperature range 1.5–300 K in fields up to 4.8 T. The incident neutron wavelength was
1.521 Å and the moving-up counter allowed us to reach reflections out of the equatorial plane
inside the angular range −5◦–10◦.

At zero field, three data collections were performed successively at 26, 16.8 (phase I) and
5.8 K (phase II). The thermal evolution of the (1/2, 1/2, 0), (1/2, 0, 1/2) and (0,−1/2, 1/2)

magnetic reflections was then followed under several applied fields up to 4.8 T. Before changing
the value of the applied field the sample was first warmed up above the Néel temperature, then,
for a given field, the measurements of the magnetic integrated intensities were performed
while cooling the sample from the paramagnetic phase. Figure 8 shows for instance the
thermal variation of the three reflections under 3 and 4.8 T. Irregularities are clearly observed
at the transitions between phase I and III under 3 T (figure 8(a)) and phase I and III under
4.8 T, whereas there is no evidence of the phase V–phase I transition at this field (figure 8(b)).
Finally two data collections were performed at 2.3 and 13 K under an applied field of 4.8 T.

For each data collection the integrated intensities have been measured for up to 60 non-
equivalent reflections. The data were analysed using a least squares procedure. The program
calculates and adjusts, for each model of magnetic structure probed, the different domain
proportions and the amplitude of the magnetic moment. The reliability factor is given by

R =
( nobs∑

i

pi |I i
cal − I i

obs|/I i
obs

)/ nobs∑
i

pi .
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Figure 8. Thermal variation of the integrated intensities of the magnetic reflections, (1/2, 1/2, 0)

(full dots), (1/2, 0, 1/2) (open dots) and (0,−1/2, 1/2) (full triangles) under an applied field of
(a) 3 T, (b) 4.8 T. In the experiments, the field was applied along the [11̄0] vertical direction of the
single crystal.

Table 1. Refined values of the moment amplitude, M, and domain proportions dz , dx and dy ,
obtained for the single q structure in the spontaneous phases I and II. The reliability factors of each
refinement are given in column 6. For the domain dz , the Fourier component �Mq = (0, 0, 1) is
associated with the propagation vector �q = (1/2, 1/2, 0). The magnetic moment at site �ri, is then
given by �M(�ri) = M �Mq cos(2π �q · �ri).

T (K) M (µB) dz (%) dx (%) dy (%) R (%)

16.8 6.44 ± 0.3 38 31 31 4.8
5.8 8.33 ± 0.4 39 31 30 5.5

nobs is the number of observed reflections and pi the weight of the reflection i : pi is the inverse
of the statistical error of the observed intensity for reflection i . The models of spontaneous
magnetic structures probed in the present calculations are chosen from the inventory of the high
symmetry magnetic structures listed by Amara and Morin [3]. In these models it is assumed
that (i) the magnetic moment keeps a constant modulus at all sites, (ii) the easy magnetization
direction is frozen by the CEF along only one family of high symmetry axes of the cube.

The reliability factor of the refinement of the data collected at 26 K for the AuCu3 structure
is R = 3%. This collection of data allowed us also to check the background level at the positions
expected for the magnetic satellites and to confirm a contamination of the diffracted intensity
by the λ/2 harmonic less than 1�. For the two spontaneous phases (I and II) the refinements
give a satisfactory agreement for either (i) a single q structure with the moments along a
fourfold axis or (ii) a double q structure with the moments along twofold axes or (iii) a triple q
structure with the moments along threefold axes. Tables 1–3 describe respectively these three
models via their Fourier components and give the values of the different refined parameters
and figure 9 shows the three magnetic structures. Table 4 compares for some reflections the
integrated intensity measured at 16.8 K in zero field and the calculated one within the three
models. These three models of multiaxial structures lead to the same powder spectra as a
collinear structure where the magnetic moments make an angle φ = 0◦ with the unique c axis
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 a) b) c)

Figure 9. Representations of the three possible spontaneous high symmetry magnetic structures:
(a) single q structure with fourfold easy axes, (b) double q structure with twofold easy axes, (c) triple
q structure with threefold easy axes.

(This figure is in colour only in the electronic version)

Table 2. Refined values of the moment amplitude, M, and domain proportions dxy , dyz and dxz ,
obtained for the double q structure in the spontaneous phases I and II. The reliability factors R
of each refinement are given in column 6. The structure is determined by the following Fourier
components: domain dxy , �Mq1 = (0, 1/

√
2, 0) with �q1 = (1/2, 0, 1/2); �Mq2 = (1/

√
2, 0, 0)

with �q2 = (0, 1/2, 1/2); domain dyz , �Mq1 = (0, 0, 1/
√

2) with �q1 = (1/2, 1/2, 0); �Mq2 =
(0, 1/

√
2, 0) with �q2 = (1/2, 0, 1/2); domain dxz , �Mq1 = (1/

√
2, 0, 0) with �q1 = (0, 1/2, 1/2);

�Mq2 = (0, 0, 1/
√

2) with �q2 = (1/2, 1/2, 0). At each site the magnetic moment is given by
�M(�ri) = M∑

qj
�Mqj cos(2π �qj · �ri).

T (K) M (µB) dxy (%) dyz (%) dxz (%) R (%)

16.8 6.40 ± 0.3 26 37 37 4.7
5.8 8.36 ± 0.4 22 38 40 5.5

Table 3. Refined values of the moment amplitude, M, and reliability factor, R, obtained for the
triple q structure in the spontaneous phases I and II. This single domain structure is determined by
the three Fourier components: �Mq1 = (0, 0, 1/

√
3) with �q1 = (1/2, 1/2, 0); �Mq2 = (0, 1/

√
3, 0)

with �q2 = (1/2, 0, 1/2); �Mq3 = (1/
√

3, 0, 0) with �q3 = (0, 1/2, 1/2) and the magnetic moment
given by �M(�ri) = M∑

qj
�Mqj cos(2π �qj · �ri).

T (K) M (µB) R (%)

16.8 6.36 ± 0.3 6.9
5.8 8.09 ± 0.4 9.9

of the (2a, 2a, a) magnetic cell [16]. From previous powder neutron data it was deduced that
two multiaxial structures associated with φ = 30◦ (triple q with moments along the twofold
axes) or φ = 35.26◦ (double q with moments along the threefold axes) were alike. Indeed
powder pattern refinements led to φ = 32◦ [16]. However no reasonable fitting of the present
single crystal data could be obtained with either of these two structures. A similar discrepancy
between powder and single crystal data analyses has been already observed for TbIn3 [21]. For
both compounds it is very probable that powdering the samples induced strong metallurgical
stresses and defects.

In order to determine the actual spontaneous structures in phases I and II let us discuss
the effects on these structures of a field applied along the [11̄0] direction assuming that it
achieves a complete domain selection and does not distort the structures. In the case of the
single q structure (table 1, figure 9(a)), the field favours only the domain dz associated with the
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Table 4. Integrated and calculated intensities for representative reflections measured at 16.8 K in
zero field within the three given models of magnetic structures.

T = 16.8 K
Triple q Double q Single q

h, k, l Iobs pi Ical Ical Ical

1/2, 1/2, 0 1360 50 1169.7 1306.8 1352
1/2, 0, 1/2 1120 50 1169.7 1119.9 1119.3
1/2, 0, −1/2 993 50 1169.7 1119.9 1119.3
0, −1/2, 1/2 1120 50 1169.7 1119.9 1119.6
0, −1/2, −1/2 1050 50 1169.7 1119.9 1119.6
1/2, 1/2, 1 405 25 352.7 393.9 407.4

−1/2, −1/2, 1 394 25 352.7 393.9 407.4
−1/2, −1, 1/2 365 25 352.7 337.7 337.6
−1/2, −1,−1/2 325 25 352.7 337.7 337.6

1, 1/2, 1/2 358 25 352.7 337.7 337.7
1, 1/2, −1/2 367 25 352.7 337.7 337.7
1/2, 0, 3/2 962 33 953.6 913 912.6
0, −1/2, 3/2 978 33 953.6 913 912.8
3/2, 1, 1/2 639 11 623.7 597.2 596.8
3/2, 1,−1/2 666 11 623.7 597.2 596.8
5/2, 2, 1/2 291 5 290.8 278.5 278.4
5/2, 2, −1/2 283 5 290.8 278.5 278.4
5/2, 5/2, 0 433 17 397.5 444 459.3

−5/2, −5/2, 0 337 13 397.5 444 459.3
1, 1, 0 2140 50 2102.9 2102.9 2102.9

−1,−1, 0 2100 50 2102.9 2102.9 2102.9
−1,−2, 0 2100 50 2102.9 2102.9 2102.9
−1,−2, 1 2130 50 2102.9 2102.9 2102.9

(1/2, 1/2, 0) propagation. Consequently the intensities at the (0,−1/2, 1/2) and (1/2, 0, 1/2)

positions, associated with the domains dx and dy respectively, should vanish. In the case of the
double q structure (table 2, figure 9(b)) the field equally favours the dxz and dyz domains. If these
two domains present an equal partition within the sample, the (1/2, 0, 1/2) and (0,−1/2, 1/2)

satellites should have exactly the same intensity, half that of the (1/2, 1/2, 0) satellite. For non-
equal distribution of the domains the sum of the (1/2, 0, 1/2) and (0,−1/2, 1/2) intensities
should equal the (1/2, 1/2, 0) intensity. Finally, as the triple q model in table 3 (figure 9(c))
is single domain, the field has no effect and the three satellites should keep an equal intensity
in a rigid structure model.

As shown in figure 8(a), the thermal evolution under 3 T of the (1/2, 1/2, 0), (1/2, 0, 1/2)

and (0,−1/2, 1/2) intensities is apparently in much better agreement with the evolution
expected for the double q rigid structure in phase I (T∗ < T < TN): the (1/2, 1/2, 0) intensity
remains twice larger than both the (1/2, 0, 1/2) and the (0,−1/2, 1/2) intensities, which are
roughly the same. The double q structure is associated with an easy magnetization direction
along twofold axes. The stabilization of a twofold axis anisotropy in phase I is however not
compatible with a magnetic transition at TN of second order as is observed in DyIn3 (see
figure 3 or [15]). Under 4.8 T, in phase I, the (1/2, 1/2, 0) intensity becomes larger than the
sum of the two other reflections (figure 8(b)). It can be also noted that DyIn3 presents an
important susceptibility (see figure 2). According to that, it is very likely that either the field
is not efficient enough to completely purify the domains or the structure is easily distorted by
applying the field.
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Table 5. Results of the refinements of the data collected at 13 K under 4.8 T (phase I) within
a triple q structure model and taking into account a field-induced distortion (H ‖ [11̄0]). This
structure can be described by a ferromagnetic component at the centre of the Brillouin zone:
�M0 = F(

√
d0/2,−√

d0/2, 0) and the three following Fourier components: �Mq1 = (0, 0,
√

d1)

with �q1 = (1/2, 1/2, 0); �Mq2 = (0,
√

d2, 0) with �q2 = (1/2, 0, 1/2); �Mq3 = (
√

d3, 0, 0)

with �q3 = (0, 1/2, 1/2). The magnetic moment at the site �ri is given by �M (�ri) = M[ �M0 +∑3
j=1

�Mqj cos(2π �qj · �ri)]. The di are refined parameters which account for the rate of deformation

of the spontaneous triple q structure; they satisfy the relation:
∑3

i=0 di = 1. The other refined
parameters are: M the moment amplitude and F the ferromagnetic reinforcement.

T = 13 K, µ0 H = 4.8 T

M (µB) F d0 d1 d2 d3 R (%)

7.55 ± 0.4 1.21 0.07 0.22 0.19 0.52 9.4

This is confirmed by the refinements of the data collected at 13 K under a field of 4.8 T
(phase I). The best agreement between calculated and observed intensities is obtained for an
initially triple q structure model (as presented in table 3) strongly distorted by the field. The
Fourier components that describe the structure are given in table 5, together with the refined
parameters. According to this structure the component of the magnetization along a twofold
axis has been calculated at 13 K under 4.8 T: M‖[1,1,0] = 2.36 µB, value in rather good
agreement with that of the experimental magnetization, M(13 K, 4.8 T) = 2.16 µB.

Such a result strongly supports the stabilization in phase I of the triple q structure with
moments along the threefold axes (table 3). The discrepancy between the expected and
experimental thermal variation of the magnetic intensities under an applied field, as shown
in figure 8, is explained then by the high susceptibility of DyIn3, which leads to a strong ability
of the magnetic structures to distort under a field.

Starting from the models of the high symmetry field-induced magnetic structures, the
refinements of the data collected in phase III: T = 2.3 K, H = 4.8 T, converge rapidly, with a
reliability factor R of 8%, on a four q structure with normalized moments lying along twofold
axes. The description of the structure and the values of all the refined parameters are given in
table 6. The calculation of the magnetization along the applied field direction using this model
gives M‖[1,1,0] = 2.24 µB at 2.3 K under a field of 4.8 T. Such a value compares well with the
one given by the magnetization measurements. As shown in figure 1 the magnetization at 2 K
under a field of 4.8 T applied along a twofold direction reaches 2.1 µB.

This field-induced phase (phase III) leads to a twofold anisotropy axis. Consequently the
stabilization of double q structure in phase II becomes very likely. The spontaneous transition
at T∗ could then be ascribed to a transition from the triple q structure described in table 3
towards the double q one in table 2.

4. Neutron spectroscopy

Any further analysis requires the knowledge of the CEF scheme in DyIn3. The CEF has
been probed in the polycrystalline (Dy0.05Y0.95)In3 alloy where no magnetic order is observed
down to 1.5 K (temperature limit). Neutron scattering experiments were performed at ILL
on the IN6 and IN4 time-of-flight spectrometers. To optimize the scattered intensity the
sample was shaped as a plate of 3 × 5 cm2 and 1 mm thick. On the high resolution IN6
spectrometer, the spectra were collected at 5, 20, 50 and 100 K with an incident neutron
energy of Ei = 3.12 meV (λi = 5.12 Å and FWHM = 0.12 meV). Figure 10 shows the
inelastic spectrum obtained at 5 K on IN6. In the down-scattering processes only one, but well
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Figure 10. The observed spectrum S(θ,ω) for the dilute alloy (Dy0.05Y0.95)In3 at 5 K obtained
on the IN6 time-of-flight spectrometer. The inset represents the evolution of the spectrum with the
temperature.

Table 6. The multiple q structure model for DyIn3 in phase III: �Mq0 = (1/4
√

2,−1/4
√

2, 0)

with �q0 = (0, 0, 0); �Mq1 = (1/4
√

2,−1/4
√

2, 0) with �q1 = (0, −1/2, 1/2); �Mq2 =
(−1/4

√
2, 1/4

√
2,−1/

√
2) with �q2 = (1/2, −1/2, 0); �Mq3 = (−1/4

√
2,−3/4

√
2, 0) with

�q3 = (1/2, 0, 1/2). This structure gives rise to four different magnetic domains. Its distortion
by an applied field along the [11̄0] direction is accounted for by a ferromagnetic reinforcement
factor F . The magnetic moments point along twofold axes and at any site �ri they are given by
�M(�ri) = M[F �M0 +

∑3
j=0

�Mqj cos(2�πqj · �ri)].

T = 2.3 K, µ0 H = 4.8 T

M (µB) F d1 (%) d2 (%) d3 (%) d4 (%) R (%)

8.46 ± 0.4 0.02 16.8 33.2 16.8 33.2 7.9

resolved, inelastic peak is observed at 1.44 meV. The corresponding de-excitation is observed
at −1.44 meV in the up-scattering processes. Increasing the temperature (inset in figure 10) the
intensity at −1.44 meV progressively increases at the expense of the excitation peak while the
scattered signal increases in down- and up-scattering around ±0.85 meV. In the up-scattering
region, a broad and weak feature appears around−2.7 meV at 20 K that progressively increases
with temperature. At 50 K another weaker feature appears around −3.6 meV. The search for
excitations at higher energies was performed on the IN4 spectrometer with an incident energy
of Ei = 17 meV (λi = 2.2 Å and FWHM ≈ 1.2 meV) at 5 and 20 K. On the IN4 spectra, the
peak at 1.44 meV is confirmed but within the experimental resolution no other excitation is
resolved up to 10 meV. All these observations reveal that, apparently, the only transition from
the ground state is the one observed at 1.44 meV.

The previous studies on NdIn3 and TbIn3 have clearly demonstrated that the CEF
parameters, A4〈r4〉 and A6〈r6〉, are positive in both compounds [20, 21]. We are therefore
justified in assuming positive CEF parameters in DyIn3 as well. From the diagram of Lea et al
[22], the W and x parametrized CEF parameters should then satisfy the conditions W > 0,
x < 0. The expected CEF ground state is either the �7 or the �6 doublet and the excitation at
1.44 meV can be ascribed to the �7 ↔ �

(1)

8 or the �6 ↔ �
(1)

8 transition. Note that the transition



6280 R M Galéra et al

probabilities calculated by Birgeneau [23] in this region of the diagram are quite consistent
with the observation of only one transition in the energy range probed. Unfortunately, with
only one observed excitation from the ground state, the CEF scheme cannot be determined
from just the neutron spectroscopy data.

5. Analysis

The CEF scheme determination was first attempted by checking the magnetic anisotropy in
the paramagnetic phase at TN. The free energy associated with the three main directions of
anisotropy in the cube has been calculated using a self-consistent method, for several (W, x)

couples in the region −1 � x � 0. For each value of x , W is adjusted according to the
experimental energy of the excitation. At TN the CEF favours the fourfold easy axis for x
ranging between −1 and −0.2 and the twofold axis for −0.2 � x � 0. In a second step
below TN, the bilinear exchange coupling is introduced and using the periodic molecular field
model [9, 24] the free energy associated with the three different models of structure was
calculated for each set (W, x) previously under test in the paramagnetic range: (i) the fourfold
easy axis (the single q model in table 1), (ii) the twofold easy axis (the double q structure in
table 2), (iii) the threefold easy axis (the triple q structure in table 3). The most stable magnetic
structure is associated with the lowest free energy and consequently with the highest magnetic
moment. In these calculations the values for the Fourier transform of the bilinear exchange
interactions J (0) and J (�k) (�k belonging to the 〈1/2, 1/2, 0〉 star) are introduced, but for a
given (W, x) couple there is no adjustable parameter. Indeed J (�k) is given by

J (�k) = 1/χCEF(TN)

where χCEF is the calculated first order magnetic susceptibility for the given (W, x) couple.
The value of J (0) is then deduced from the experimental curve of 1/χ(1) using the relation

1/χ(1)(TN) = 1/χCEF(TN) − J (0)/(gJµB)2.

Results show that the single q (fourfold easy axis) structure remains stable in the whole
antiferromagnetic phase for −1 � x � −0.2. In contrast, for x larger than −0.2, calculations
predict a spontaneous phase transition from the double q (twofold easy axis) structure at
low temperatures towards the triple q one (threefold easy axis) at high temperatures. The
value of the temperature of the transition between the double and triple q structures, T∗, was
adjusted as a function of x . The best agreement between the calculated transition temperature,
T∗cal = 16.6 K, and the experimental value, T∗ = 16.5 K, is obtained for x = −0.145
and leads to W = 0.142 K. The corresponding values of J (0) and J (�k) are respectively
−1.3 T µ−1

B (≈27 K) and 0.854 T µ−1
B (≈18 K). This set of CEF parameters corresponds

to the following energy level scheme: �7 (0 K), �
(1)
8 (16.76 K, 1.44 meV), �6 (26.44 K,

2.27 meV), �
(2)
8 (49.95 K, 4.30 meV) and �

(2)
8 (69.46 K, 5.98 meV). Coming back to the

neutron spectroscopy data such a scheme is apparently consistent with experimental spectra.
For x = −0.145, the transition probability matrix elements connecting the �7 ground state
and the highest excited levels �

(2)

8 and �
(3)

8 are nearly zero [23]; this may explain the fact that
only one transition from the ground state could be observed. According to [23], the features
observed in the up-scattering processes, at 20 K around −0.85 and −2.7 meV, can be ascribed
to transitions from the first excited level �

(1)

8 to the �6 and �
(2)

8 levels respectively, and the one
around −3.6 meV at 50 K to that from the second excited level �6 to the �

(3)

8 .
Using the whole set of CEF and bilinear exchange parameters thus determined the magnetic

specific heat has been calculated. The results are compared in figure 11 with the experimental
data deduced from figure 1 in [15]. Some discrepancies between calculations and experimental
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Figure 11. The full curve represents the magnetic specific heat calculated within the periodic
molecular field model [9]. The calculations have been performed assuming stabilization of structure
b (figure 9) in phase II and structure c (figure 9) in phase I, with the following set of fixed parameters:
W = 0.142 K, x = −0.145, J (0) = −1.3 T µ−1

B and J (�k) = 0.854 T µ−1
B . Calculations are

compared with the experimental magnetic specific heat (open dots) deduced from figure 1 in [15].

data are observed: the calculated specific heat is larger than the experimental one below 12 K
but becomes smaller above T∗. Nevertheless the main features are reasonably reproduced—
for instance the hump below 15 K, the transition temperatures and the contribution in the
paramagnetic phase. A latent heat of 0.2 J mol−1 is calculated at the transition between the
phases I and II. This small value, compared with the variation of 230.4 J mol−1 of the internal
energy between 0 K and TN, may account for the fact that experimentally the latent heat
could not be observed for polycrystalline samples [15]. In zero field the values of the magnetic
moment calculated at 3 and 5.8 K are 8.74 and 8.64 µB. They compare well with those deduced
from neutron data, respectively 8.83 µB at 3 K (powder data [16]) and 8.36 µB at 5.8 K (table 2).
In phase I the agreement is less good: at 13.8 K the calculated value for the moment is 5.41 µB,
whereas the refinement for the data collected at 13.8 K gives a value of 6.37 µB.

The properties under an applied field are less properly described. For instance calculations
clearly confirm a spontaneous transition from the double q structure (phase II) to the four q one
(phase III) when increasing the field; however the critical field at low temperatures is calculated
at 3.25 T, whereas experimentally the transition is observed at 4.3 T. Also in phase II under
low field (0.25 T) the calculated magnetization is about 20% larger than the experimental one
at low temperatures.

It turns out that considering only CEF and bilinear exchange couplings one can nicely
account for, at least, the spontaneous phase transitions in DyIn3. Though the stabilization of
two spontaneous multiple q structures strongly supports the existence of quadrupolar couplings
it is pointless, in the absence of an independent experimental confirmation of the CEF scheme,
to attempt a quantitative determination of their magnitude. However the existence of a triple
q structure with a threefold easy axis attests to the antiferroquadrupolar character of the
interactions in the ε symmetry (�5). This leads to the following relation for the Fourier
transforms of the quadrupolar coefficients: K ε(0) < K ε(1/2, 1/2, 0) [3]. The existence of
a double q with a twofold easy axis reveals in contrast ferroquadrupolar coupling in the γ

symmetry (�3): K γ (1/2, 1/2, 0) < K γ (0).
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In the paramagnetic range the first and third order magnetic susceptibilities were calculated
within the CEF susceptibility formalism [2] using the set of parameters previously determined:
W = 0.142 K, x = −0.145. Good fits between calculated and experimental data are obtained
with θp = −32 K (see figures 6 and 7). This value of θp is in good agreement with that of J (0)

determined at TN. In the calculations of the third order magnetic susceptibility (figure 7) G1

represents the total quadrupolar parameter as defined in [2]:

G1 = (Bµ)2

Cµ

0

+ K µ, µ = ε, γ

where Bµ represents the magneto-elastic coefficient, Cµ

0 the background symmetrized elastic
constant and K µ the two ion quadrupolar coefficient. Along the threefold and fourfold
symmetry axes G1 retains very weak values, ≈−1.5 to −5 mK; the main effect comes from
θp. As expected, the third order susceptibility variation along the twofold axis is intermediate
between the threefold and fourfold variations. As no measurements of the elastic constant
or parastriction have been performed on DyIn3, the values of the coefficients K µ(0) remain
undetermined. However comparing the values of G1 and K µ(0) deduced for TbIn3 [21] leads
us to suppose that the coefficients K µ(0) remain weak in DyIn3. In the paramagnetic phase of
DyIn3 also the magnetic properties are clearly dominated by the CEF interactions and bilinear
exchange couplings.

6. Conclusions

Bulk magnetization studies on DyIn3 have confirmed the metamagnetic behaviour of the
magnetization in the ordered phase and allowed us to determine the magnetic phase diagrams.
Systematic measurements along the twofold axis have revealed a complex phase diagram with
at least five phases. Only three of these phases could be probed by the neutron diffraction
technique. The analysis of all the neutron diffraction data allowed us to sketch a coherent
interpretation of the low field phase diagram: stabilization of a three q structure below
TN and transition towards a double q structure at T∗. Neutron spectroscopy results have
definitively ruled out the set of CEF parameters previously reported in the literature [15].
Within the periodic molecular field model we determine here a new set of CEF parameters:
W = 0.142 K, x = −0.145 or A4〈r4〉 = 5.8 K, A6〈r6〉 = 8.5 K, consistent with the neutron
spectroscopy data, which account for the spontaneous phase transition at T∗ = 16.5 K in the
antiferromagnetic range. It turns out that with this set of CEF parameters the behaviour of
DyIn3 can be described in the ordered phase without bringing in the quadrupolar interactions.
The analysis of the third order magnetic susceptibility in the paramagnetic phase confirms
that the total quadrupolar parameters are at least one order of magnitude smaller than those
determined in NdIn3 [19] and TbIn3 [21]. Though quadrupolar interactions are necessary to
stabilize the multiple q magnetic structures in DyIn3, the CEF and the bilinear coupling, alone,
account nicely for the magnetic properties.
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